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Soar is a theory of cognition embodied in a computer system. In 1987 it was used 2s the ~entral exemplar to
make the case that cognitive science should attempt unified theodes of cognition (UTC) [13}'. Since then,
much research has been done to move Soar toward being a real UTC, rather than just an exemplar. Figure |
lists the ret=vant rudies®. They have been Gone oy a broad comnmunity of researchers in the pursuit of a
multiplicity of interests. This symposium presents four of these studies to convey the current state of Soar
as a UTC (their names are marked with asterisks in the figure). This short paper provides additional breadth
and context.

THE SOAR ARCHITECTURE

We review here the basic structure of the Soar architecture, which has been described in detail elsewhere
(2, '3, 20). Soar formulates all tasks in problem spaces, in which operators are selectively applied to the
current state to attain desired states. Problem spaces appear as triangles in Figure 2 (which describes a
Soar system for comprehending natural language). Problem solving proceeds in a sequence of decision
cycles that select problem spaces, states, and operators. Each decision cycle accumulates knowledge from a
long term recognition memory (realized as a production system). This memory continually matches against
working mémory, elaborating the current state and retrieving preferences that encode knowledge about the
next step to take. Access of recognition memory is involuntary, parallel, and rapid (assumed to take on the
order of 10 milliseconds). The decision cycle accesses recognition memory repeatedly to quiescence, so
cach decision cycle takes on the order of 100 milliseconds.

If Soar does not know how to proceed in a problem space, an impasse occurs. Soar responds to an impasse
by creating a subgoal in which a new problem space can be used to acquire the needed knowledge. If a
lack of knowledge prevents progress in the new space, another subgoal is created and so on, creating a
goal-subgoal hierarchy. Figure 2 shows how multiple problem spaces arise. Once an impasse is resolved by
problem solving, the chunking mechanism adds new productions to recognition memory encoding the results
of the problem solving, so the impasse is avoided in the future. All incoming perception and outgoing motor
commands flow through the state in the top problem space (which occurs above the spaces in Figure 2).

FOUR EXAMPLES OF RECENT PROGRESS
NL-Soar (Huffman, Lehman, Lewis and Tesslar)
The goal of the NL-Soar work is to develop a general natural language capability that satisfies the constraint
of real-time comprehension. To achieve rates of 200-300 words per minute, NL-Soar must recognitionally
bring to bear multiple sources of knowledge (e.g., syntactic, semantic, and task knowledge). In addition to

1Soar research encompasses artificial intelligence and human computer interaction (HCT) as well, which we will largely ignore
here.

?We include several unpublished studies to better convey Soar’s current state,
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Figure 2: Achieving recognitional comprehension from deliberate comprehension in NL-Soar.

supporting this kind of processing, the system must integrate with the rest of Soar to work in any task that
requires language understanding.

NL-Soar realizes real-time comprehension by applying a single operator to comprehend each word as it is
read, dropping into lower problem spaces to complete the comprehension when the required knowledge is
not directly available (i.¢., an impasse is reached). Figure 2 shows this behavior. As in previous work [11],
we assume that comprehension builds a situation model of what the utterance is about, and an usterance
model that encodes the syntactic structure of the utterance. When Soar impasses on a comprehend-word
operator, it drops into the Language space, which has operators that make changes to the two models. Any
kind of knowledge can propose an operator (e.g., syntactic or semantic), but operators have consiraints that
must be satisfied before they can apply. These constraints can be arbitrarily complex syntactic, semantic,
or pragmatic tests. The constraints are checked serially in the Constraint-check space, which consults
the situation and utterance models. Checking semantic constraints may require accessing general world
knowledge, which occurs in the Recail space. Other spaces may be invelved in comprehension; for
example, referent resolution happens in the Resolve-referent space (not shown in the figure). Once the
deliberate problem solving produces the knowledge to resolve the comprehend-word operator’s impasse at
the top, chunking adds new elements to long term memory so comprehension can proceed by recognition for
similar utterances and contexts in the future. These chunks do the constraint checking in parallel, integrating
into a single recognition the disparate knowledge sources tapped in the deliberate problem solving.
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NL-Soar is a functioning language system: its syntactic knowledge currently comprises about 75% of James
Allen’s outline of English in [1], and it can handie the semantics of simple instructions for the immediate
reasoning [11] and Robo-Soar blocks-world tasks [7, 9]. The novel aspect of the recent work is using
chunking to routinely move kncwledge up the problem space hierarchy to create an integrated recognitional
comprehension system. A preliminary analysis over a very small set of test sentences indicates that about
half the chunks perform lexical access (i.c., the chunks are specific to lexical items). The remaining non-
lexical chunks are also fairly specific, usually tied to particular syntactic forms and semantic categories.
While there is transfer to new utterances, the transfer is limited by the specificity of the chunks. This impliec
amodel of comprehension that depends on a large number of fairly specific chunks [13]. This does not mean
there is no generality in NL-Soar’s linguistic knowledge. Quite the opposite, the Language space comprises
very general sources of knowledge. It simplv means that the generality is limited at the recognitional level.
Additional research is necessary to fully establish the sufficiency of this model.

SC-Soar (Simon)

The goal of the SC-Soar work is 1o develop a mode! of regularity detection as it occurs in series completion
tasks (e.g., A, B, A, C, A, 7). Solving these puzzies requires the capability to hypothesize and test the
underlying rule of the sciies. The series-completion task provides a microcosm for studying concept
acquisition; it involves inducing a concept from examples and encoding the environment in terms of the

new concept.

SC-Soar solves a series completion probiem Dy casting it as a comprehension task: comprehension operators
are applied to each item in the series, and subspaces encode the knowledge of how to hypothesize and test
the underying rule. The structure is that of NL-Soar, although the knowledge is not about language but
about the relations that characterize the series, and the focus is on the deliberate phase of this specialized
comprehensicn. Comprehending an item involves finding relationships between the item and other items in
the series (relationships can be alphabetic or identity). To establish a relationship, attention must be focused
on at least one other item; the arzention operators posited for the work on immediate reasoning [16] provide
this functionality. Attending to other items may aiso trigger knowledge to hypothesize a period size for the
series. Once a period is hypothesized, SC-Soar re-represents the series by structuring it into groups of items.
This is not accomplished in one massive step, but occurs by re-reading the series. Thus, SC-Soar exhibits a
form of progressive deepening. Comprehension chunks leamed during the first pass transfer to subsequent
passes, so that some of the deliberate processing can be avoided. After this re-encoding, comprehension
proceeds by establishing relationships between groups rather than single items. A relationship between
groups, combined with the simpler relationships within groups, establishes a hypothesis for the underlying
rule of the series. This hypothesis is tested by generating expectations and matching them against the rest
of the series.

The novel features of SC-Soar are structuring the system into comprehension operators, modulating problem
solving by attention, and leaming during the task. The first two have independent support for their plausibility
from other work {11, 13, 16]. The leaming is important for modeling progressive deepening behavior and
improvement across trials. Currently SC-Soar solves ten out of fifteen series in the original Simon and
Kotovsky set [22]. The five series it cannot solve were among the most difficult. For the ten it solves, the
number of decision cycles it takes to hypothesize the correct pattem provides a measure of duration that
corresponds closely to the relative difficuity of these series for the subjects. The leaming has not yet been
compared with human data.
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Robo-Soar and Hero-Soar (Laird)

The goal of the Robo-Soar and Hero-Soar work is to get Soar to interact with an extenal environment.
The functional demands of working in a dynamic ¢nvironment include reactive execution, interruptibiliry,
flexdble on-demand planning, and the conversion of deliberate planning to reactive execution. Robo-Soar
and Hero-Soar are robotic systems developed to explore how Soar can support these capabilities (7, 9].
Robo-Soar controls a Puma arm and receives perceptual input through a camera; its task is 10 align blocks
in a work area, unless interrupted by a flashing “trouble” light, in which case it should immediately push a
button. Hero-Soar controls a mobile robot with grippers and sonar sensors; its task is to navigate around a
room [ooking for cups (o retrieve,

Robo-Soar and Hero-Soar cope with the demands of exjernal interaction by taking advantage of the three
different ways that Soar can intend actions: by recognition, by deliberate operator selection, and by
unrestricted problem solving. At the lowest level, actions can be evoked by a single chunk in recognition
memory. This supports high-speed response for automatic reflexes, such as stopping the wheel motors
when Hero-Soar detets an objeci in its path. No deliberation is involved, hence the action cannot be
modulaied by additional knowledge. At the next level of control, Soar chooses an action by selecting an
operator in a problem space. For example, in Rcbo-Soar operators exist for close-gripper, open-gripper,
and move-gripper. At cach decision cycle, recognition memory retrieves all the relevant preferences abou:
what action to do next, and the decision procedure interprets these preferences to make a unique selection.
Thus, the decision is based upon an integration of all immediately available knowledge, rather than an
isolated stimulus. This makes Soar interruptible, as at each decision cycle any operator can be proposed
and considered (¢.g., the operator to push the button). The cost of bringing more knowledge to bear is time.
However, the decision cycle is fast enough (about ten decisions per second) that the operator level effects
reactive execution. When Soar lacks the knowledge to select the next action uniquely, an impasse arises.
Soar responds by formulating this sclection as a problem to be solved in a problem space. Planning is but
one of 2 number of methods available. For example, Soar could ask an outside agent for help. Once the
impasse is resolved, chunks are add=d to recognition memory that will allow the decision to be made in
the futur= without problem solving. Thus, as in NL-Soar (Figure 2), chunking supports the conversion of
deliberate processing to reactive execution.

Robo-Soar and Hero-Soar are not psychological models of perception and action. However, whether the
goal is to build a mobile robot or model human behavior, the functional demands of working in a dynamic,
uncertain environment are the same. From the UTC perspective, the Robo/Hero-Soar work establishes
that Soar is sufficient to handle some of these demands and permits the exploration of how perception and
motor behavior integrate with central cognition and leaming. It paves the way for adopting psychologically
realistic perceptual and motor systems.

Browsaer-Soar (John)

The goal of the Browser-Soar work is to model how humans interact with a reactive environment (a computer
browser) in a rapid perception-action loop [5). Browser-Soar is intended to be a detailed psychological model
of the moment-by-moment interaction.? Browsers are application programs that allow multiple access paths
to data bases via recognition of pointers (as opposed 10 retrieval by a query command language). The use
of browsers is characterized by both deliberate search and opportunistic switches in search strategy. The
specific towser studied is the on-line help system for cT, an interactive graphics programming language®.
This browser consists of three windows: one provides access to topics via a hierarchical menu, another

*Browser-Soar does not yet interface with actual robotic effectors and perceptual devices.
“cT was developed at the Center for the Design of Educational Computing (CDEC), Camegie Mellon University.
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provides access via an alphabetic list, and the third displays the help tex: for a selected topic.

Browser-Soar consists of a set of problem spaces that provide the capability to search deliberately through the
help windows, while allowing recognition of new items to trigger knowledge at any time that may change the
search strategy. The top problem space in Browser-Soar (Browse) is entered when an impasse arises in the
task space for programming in the cT language. A browsing episode involves bringing up the help window,
finding the appropriate help, and applying the newly found information to the probiem at hand. Each of
these activities corresponds to an operator in the Browse space. Currently, Browser-Soar implements the
find-appropriate-help operator. Applying this operator results in an impasse because the operator cannot
be implemented by recognition. Soar responds by setting up another problem space, with operators that
define the search criteria (¢.g., what labels to look for in the help windows), define the evaluation criteria
(how to decide that some piece of information will actually help resolve the impasse in the task space),
carry out the search, and evaluate the search results. Each of these operators is also implemented in a
problem space; for example, carrying out the search for the defined criteria is accomplished in a space with
operators that select among search methods and execute them. At the bottom of the problem space hierarchy
are motor operators that control mouse and keyboard actions, and cognitive operators that can be applied
with directly available knowledge. The operators in Browser-Soar can be viewed as deliberate goals, and
this organization is useful for modeling the goal-oriented component of browsing as well as the mechanics
of manipulating the windows used for browsing. Data-driven, opportunistic behavior emerges because an
additicnal operator, evaluate-new-items, is proposed whenever new informarion is brought within the scope
of attention (evaluate-new-items is available in every Browser-Soar problem space). The current problem
solving is thus interrupted (as in Robo/Hero-Soar) so the new items may be considered, possibly suggesting
a more relevant path to pursue.

Browser-Soar simulates in detail a 67 second episode of a ¢T programmer using the on-line help 1o try to
find a particular graphics command. The simulation shows the user’s behavior to be largely GOMS-like 2],
i.c. aroutine cognitive skill, even though, because of the continuous rapid feedback, the behavior might
seeln MOre Opeu and iniciligently speainiicus. On the cthorhand, the spiscde contains three failed accesses
of help text and two changes of search strategy. To handle these requires forms of control that lie outside
of the GOMS-style procedural hierarchy (e.g., the interrupt). Thus, Browser-Soar not only shows that this
browsing behavior is GOMS-like, but characterizes the ways in which it departs from that simple model.

MAKING PROGRESS TOWARD A UNIFIED THEORY O+ CCGNITICN
We now step back from an examination of specific models to look at how Soar as a whole is developing.
Breadth shouid be the hallmark of a UTC. In fact, a UTC effont that engages a large number of independent
investigators will by nature proceed breadth-first. Soar centainly fits this model, and continues to cover
a wide range of cognitive phenomena (Figure 1)°. The task variety exhibited in Figure 1 ranges from
traditional problem solving tasks like Tower of Hanoi, to highly skilled tasks such as natural Janguage,
to planning and interacting in a dynamic external environment. The span of time-scales is also evident
from Figure 1, ranging from immediate response tasks to developmental tasks. We are beginning to take
advantage of cross-domain integration. By integrating different capabilities to model a whole task, we can
bring more constraints to bear and reduce theoretical degrees of freedom. This kind of integration is evident
in the close relation between NL-Soar and the series completion model (SC-Soar), and in work on taking

SWe walk about individual atempts to use Soar as a cognitive theory as if they were separate systems, and give them unique
names, such as XX-Soar. In fact, each such system is the same Soar, but with different knowledge. Such knowledge is often ad-hoc.,
which poses s problem of identifying the contributions of the theory, but this is a problem for all of psychology. See [11] for an
approach to this problem with Scor.
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instructions (NL-Soar, Bl-Soar, and IR-Soar [11)).

In addition to achieving wide coverage, Soar must ultimalely provide theories that press the scientific fronters
of specific domains. Soarisbeginningto achieve such depthindiverse ways. The immediate behavior models
provide zero-parameter predictions of performance times for simple reaction, choice reaction, transcription
typing, and stimulus-response compatibility tasks {4, 13]. IR-Soar(Syl), the syllogistic reasoning mcdel
(15, 16], has recently been extended to give a detailed account of individual differences. The Browser-Soar,
Data-Soar [24], Generic Design {14], and TOH-Soar (21] models provide simulations of thinking aloud
protocols for their respective tasks. The Tower of Hanoi simulation is particuiarly interesting as it uses
chunking to model strategy change. Figure 1 notes some of the different ways that Soar theories model
behavior: accounting for individual differences (I), simulating protocols (P), providing qualitative coverage
of phenomena (Q), demonstrating the sufficiency of Soar to accomplish the task (S), and making zero
parameter predictions (Z).

Soar theories can be novel in their predictions and explanations, and/or synthetic, by incorporating existig
theories and well understood mechanisms. For example, besides providing a new theory of individual
differences, IR-Soar(Syl) is synthetic in its incorporation of the theory of mental models [6]. Browser-
Soar is essentially a GOMS-like model, but introduces new control mechanisms. NL-Soar is synthetic in
its assimilation of existing linguistic knowledge, but is novel in its method for automatically becoming
recognitional. In contrast, the immediate behavior theory builds mostly on previous work in HCI {2, 3],
while the model of the balance beam task [13] is completely unique to Soar.

FUTURE DIRECTIONS
We believe it is now fair to assess Soar as a genuine candidate for becoming a generally useful UTC.
Soar’s breadth is impressive and there are beginning to be places where it makes specific contributions at the
frontier. However, the coverage remains quite patchy, which substantially diminishes the assessment of Soar
as a coherent theory. Also, Soar efforts often evolve along idiosyncratic paths, viewed against the standard
ways theory and data develop in psychology. For instance, NL-Soar’s mechanism for the transition from
deliberate to recognitional comprehension emerges well before NL-Soar confronts any standard linguistic or
psycholinguistic ph=nomena. There are reasons for this priority, namely, the functional necessity of creating
and growing the mass of comprehend-word operators. But it leaves NL-Soar deficient when evaluated by
current criteria in either linguistics or psycholinguistics. More examples can be easily found. Thus, our
net assessment is that Soar must still be viewed as nascent, and a substantial wait-and-see attitude is still

yustified.

Yet if one looks for encouraging results, they are also easily discerned. Integration of perception, cognition,
and motor behavior is proceeding, although much still needs 1o be done. The little cluster of integration
of language comprehension (NL-Soar), immediate reasoning (IR-Soar), instruction-taking (BI-Soar), and
concept formation (SC-Soar) is an important harbinger.

Important changes are occurring that involve evolution of the Soar architesture itself. We have shified to an
underlying processing of states by continuous modification rather than discrete copying [10]. We continue
to move toward using an annotated models representation [16] in all of our systems. The effort is already
underway to extend Soar perception to model visual attention [27]. We have become convinced that the
existing recognition memory is computationally unrealistic, so work is in progress to examine alternative
formulations (25). We are also exploring the possibility of implementing the Soar architecture using a neural
network [17].
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